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ABSTRACT
We present new techniques that allow a return-into-libc at-
tack to be mounted on x86 executables that calls no func-
tions at all. Our attack combines a large number of short
instruction sequences to build gadgets that allow arbitrary
computation. We show how to discover such instruction se-
quences by means of static analysis. We make use, in an
essential way, of the properties of the x86 instruction set.
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1. INTRODUCTION
We present new techniques that allow a return-into-libc

attack to be mounted on x86 executables that is every bit
as powerful as code injection. We thus demonstrate that
the widely deployed “W⊕X” defense, which rules out code
injection but allows return-into-libc attacks, is much less
useful than previously thought.

Attacks using our technique call no functions whatsoever.
In fact, the use instruction sequences from libc that weren’t
placed there by the assembler. This makes our attack re-
silient to defenses that remove certain functions from libc or
change the assembler’s code generation choices.

Unlike previous attacks, ours combines a large number of
short instruction sequences to build gadgets that allow ar-
bitrary computation. We show how to build such gadgets
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using the short sequences we find in a specific distribution
of gnu libc, and we conjecture that, because of the proper-
ties of the x86 instruction set, in any sufficiently large body
of x86 executable code there will feature sequences that al-
low the construction of similar gadgets. (This claim is our
thesis.) Our paper makes three major contributions:

1. We describe an efficient algorithm for analyzing libc to
recover the instruction sequences that can be used in
our attack.

2. Using sequences recovered from a particular version
of gnu libc, we describe gadgets that allow arbitrary
computation, introducing many techniques that lay
the foundation for what we call, facetiously, return-
oriented programming.

3. In doing the above, we provide strong evidence for
our thesis and a template for how one might explore
other systems to determine whether they provide fur-
ther support.

In addition, our paper makes several smaller contributions.
We implement a return-oriented shellcode and show how it
can be used. We undertake a study of the provenance of
ret instructions in the version of libc we study, and consider
whether unintended rets could be eliminated by compiler
modifications. We show how our attack techniques fit within
the larger milieu of return-into-libc techniques.

1.1 Background: Attacks and Defenses
Consider an attacker who has discovered a vulnerability

in some program and wishes to exploit it. Exploitation, in
this context, means that he subverts the program’s control
flow so that it performs actions of his choice with its cre-
dentials. The traditional vulnerability in this context is the
buffer overflow on the stack [1], though many other classes
of vulnerability have been considered, such as buffer over-
flows on the heap [29, 2, 13], integer overflows [34, 11, 4],
and format string vulnerabilities [25, 10]. In each case, the
attacker must accomplish two tasks: he must find some way
to subvert the program’s control flow from its normal course,
and he must cause the program to act in the manner of his
choosing. In traditional stack-smashing attacks, an attacker
completes the first task by overwriting a return address on
the stack, so that it points to code of his choosing rather
than to the function that made the call. (Though even in
this case other techniques can be used, such as frame-pointer
overwriting [14].) He completes the second task by inject-
ing code into the process image; the modified return address
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on the stack points to this code. Because of the behavior
of the C-language string routines that are the cause of the
vulnerability, the injected code must not contain nul bytes.
Aleph One, in his classic paper, discusses how to write Linux
x86 code under this constraint that execs a shell (for this
reason called “shellcode”) [1]; but shellcodes are available
for many platforms and for obtaining many goals (see, e.g.,
[31]).

This paper concerns itself with evaluating the effectiveness
of security measures designed to mitigate the attacker’s sec-
ond task above. There are many security measures designed
to mitigate against the first task —each aimed at a specific
class of attacks such as stack smashing, heap overflows, or
format string vulnerabilities —but these are out of scope.

The defenders’ gambit in preventing the attacker’s induc-
ing arbitrary behavior in a vulnerable program was to pre-
vent him from executing injected code. The earliest iter-
ations of this defensemodified the memory layout of exe-
cutables to make the stack nonexecutable. Since in stack-
smashing attacks the shellcode was typically injected onto
the stack, this was already useful. A more complete de-
fense, dubbed “W⊕X,” ensures that no memory location in
a process image is marked both writable (“W”) and exe-
cutable (“X”). With W⊕X, there is no location in memory
into which the attacker can inject code to execute. The
PaX project has developed a patch for Linux implementing
W⊕X [22]. Similar protections are included in recent ver-
sions of OpenBSD. AMD and Intel recently added to their
processors a per-page execute disable (“NX” in AMD par-
lance, “XD” in Intel parlance) bit to ease W⊕X implemen-
tation, and Microsoft Windows (as of XP SP2) implements
W⊕X on processors with NX/XD support.

Now that the attackers cannot inject code, their response
was to use, for their own purposes, code that already ex-
ists in the process image they are attacking. (It was Solar
Designer who first suggested this approach [28].) Since the
standard C library, libc, is loaded in nearly every Unix pro-
gram, and since it contains routines of the sort that are
useful for an attacker (e.g., wrappers for system calls), it
is libc that is the usual target, and such attacks are there-
fore known as return-into-libc attacks. But in principle any
available code, either from the program’s text segment or
from a library it links to, could be used.

By carefully arranging values on the stack, an attacker
can cause an arbitrary function to be invoked, with arbitrary
arguments. In fact, he can cause a series of functions to be
invoked, one after the other [21].

1.2 Our Results
One might reasonably ask why, in the face of return-into-

libc attacks, it was considered worthwhile to invest in de-
ploying W⊕X. The answer is that return-into-libc was con-
sidered a more limited attack than code injection, for two
reasons:

1. in a return-into-libc attack, the attacker can call one
libc function after another, but this still allows him
to execute only straight-line code, as opposed to the
branching and other arbitrary behavior available to
him with code injection;

2. the attacker can invoke only those functions available
to him in the program’s text segment and loaded li-
braries, so by removing certain functions from libc it
might be possible to restrict his capabilities.1

Were the perception of return-into-libc attacks described
above correct, deploying W⊕X would in fact weaken at-
tackers. Unfortunately, we show in this paper that this
perception is entirely untrue: we describe new return-into-
libc techniques that allow arbitrary computation (and that
are not, therefore, straight-line limited) and that do not re-
quire calling any functions whatsoever, so removing func-
tions from libc is no help.

1.2.1 The Building Blocks for Our Attack
The building blocks for the traditional return-into-libc at-

tack are functions, and these can be removed by the main-
tainers of libc. By contrast, the building blocks for our at-
tack are short code sequences, each just two or three in-
structions long. Some are present in libc as a result of the
code-generation choices of the compiler. Others are found in
libc despite not having been placed there at all by the com-
piler. In either case, these code sequences would be very
difficult to eliminate without extensive modifications to the
compiler and assembler.

To understand how there exist code sequences in libc that
were not placed there by the compiler, consider an analogy
to English. English words vary in length, and there is no
particular position on the page where a word must end and
another start. Intel x86 code is like English written without
punctuation or spaces, so that the words all run together.2

The processor knows where to start reading and, continuing
forward, is able to recover the individual words and make
out the sentence, as it were. At the same time, one can make
out more words on the page than were intentionally placed
there. Some words will be suffixes of other words, as “dress”
is a suffix of “address”; others will consist of the end of one
word and the beginning of the next, as “head” can be found
in “the address”; and so on. Here is a concrete example
for the x86, taken from our testbed libc (see Section 1.2.6).
Two instructions in the entrypoint ecb_crypt are encoded
as follows:

f7 c7 07 00 00 00 test $0x00000007, %edi
0f 95 45 c3 setnzb -61(%ebp)

Starting one byte later, the attacker instead obtains

c7 07 00 00 00 0f movl $0x0f000000, (%edi)
95 xchg %ebp, %eax
45 inc %ebp
c3 ret

How frequently such things occur depends on the character-
istics of the language in question, what we call its geometry.
And the x86 ISA is extremely dense, meaning that a random
byte stream can be interpreted as a series of valid instruc-
tions with high probability [3]. Thus for x86 code it is quite
easy to find not just unintended words but entire unintended
sequences of words. For a sequence to be potentially useful
in our attacks, it need only end in a return instruction, rep-
resented by the byte c3.3 In analyzing a large body of code
1One candidate for removal from libc is system, a function
often used in return-into-libc attacks but not much used in
Unix daemons, since it is difficult to apply securely to user
input [33, Section 8.3].
2 . . . if English were a prefix-free code, to be pedantic.
3Sequences ending with some other instructions can also be
useful; see Section 5.1.
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such as libc we therefore expect to find many such sequences,
a claim that we codify as this paper’s thesis:

Our thesis: In any sufficiently large body of x86 ex-
ecutable code there will exist sufficiently many useful
code sequences that an attacker who controls the stack
will be able, by means of the return-into-libc tech-
niques we introduce, to cause the exploited program
to undertake arbitrary computation.

By contrast, on an architecture such as MIPS where all in-
structions are 32 bits long and 32-bit aligned there is no
ambiguity about where instructions start or stop, and no
unintended instructions of the sort we describe. One way
to weaken our attack is to bring the same features to the
x86 architecture. McCamant and Morrisett, as part of their
x86 Software Fault Isolation (SFI) design [19], propose an
instruction alignment scheme that does this. However, their
scheme has some downsides: first, code compiled for their
scheme cannot call libraries not so compiled, so the switch
must be all-or-nothing; second, the nop padding allows less
code to fit in the instruction cache and the “andl $0xfffffff0,
(%esp); ret” idiom imposes a data dependency that may in-
troduce slowdowns that might be unacceptable in general-
purpose software as opposed to the traditional, more lim-
ited SFI usage scenarios.4 We stress, however, that while
countermeasures of this sort would impede our attack, they
would not necessarily prevent it. We have taken some steps,
described in Section 2, to avoid including sequences in our
trie that were intentionally placed there by the compiler, but
an attacker is under no such obligation, and there may well
be enough sequences that are suffixes of functions in libc to
mount our attack.

In relying intimately on the details of the x86 instruction
set, our paper is inspired by two others: rix’s Phrack article
showing how to construct alphanumeric x86 shellcode [24]
and Sovarel, Evans, and Paul’s “Where’s the FEEB?,” which
showed how to defeat certain kinds of instruction set ran-
domization on the x86 [30].

1.2.2 How We Find Sequences
In Section 2, we describe an efficient algorithm for static

analysis of x86 executables and libraries. In the version of
libc we examined, our tool found thousands of sequences,
from which we chose a small subset by means of which to
mount our attack. Static analysis has recently found much
use as an attack tool. For example, Kruegel et al. [16] use
sophisticated symbolic execution to find ways by which an
attacker can regain control after supposedly restoring a pro-
gram to its pristine state, with the goal of defeating host-
based intrusion detection system. In their setting, unlike
ours, the attacker can execute arbitrary injected code. Their
static analysis techniques, however, might be applicable to
our case as well.

1.2.3 How We Use Sequences in Crafting an Attack
The way we interact with libc in return-oriented program-

ming differs from the way we interact with libc in traditional
return-into-libc attacks in three ways that make crafting
gadgets a delicate, difficult task.

4Things would be better if Intel added 16-byte–aligned ver-
sions of ret, call, jmp, and jcc to the x86 instruction set.

1. The code sequences we call are very short—often two
or three instructions— and, when executed by the pro-
cessor, perform only a small amount of work. In tradi-
tional return-into-libc attacks, the building blocks are
entire functions, which each perform substantial tasks.
Accordingly, our attacks are crafted at a lower level of
abstraction, like assembler instead of a high-level lan-
guage.

2. The code sequences we call generally have neither func-
tion prologue nor function epilogue, and aren’t chained
together during the attack in the standard ways de-
scribed in the literature, e.g., by Nergal [21].

3. Moreover, the code sequences we call, considered as
building blocks, have haphazard interfaces; by con-
trast, the function-call interface is standardized as part
of the ABI.

(Recall that there is, of course, a fourth difference between
our code sequences and libc functions that is what makes
our attack attractive: the code sequences we call weren’t
intentionally placed in libc by the authors, and are not eas-
ily removed.) In Section 3, we show, despite the difficulties,
how to construct gadgets —short blocks placed on the stack
that chain several of instruction sequences together— that
perform all the tasks one needs to perform. We describe gad-
gets that perform load/store, arithmetic and logic, control
flow, and system call operations.

We stress that while we choose to use certain code se-
quences in the gadgets in Section 3, we could have used
other sequences, perhaps less conveniently; and while our
specific code sequences might not be found in a libc on an-
other platform, other code sequences will be, and gadgets
similar to ours could be constructed with those— at least if
our thesis holds.

1.2.4 Previous Uses of Short Sequences in Attacks
Some previous return-into-libc attacks have used short

code snippets from libc. Notably, code segments of the form
pop %reg; ret to set registers have been used to set func-
tion arguments on architectures where these are passed in
registers, such as SPARC [20] and x86-64 [15]. Other ex-
amples are Nergal’s “pop-ret” sequences [21] and the “regis-
ter spring” technique introduced by dark spyrit [6] and dis-
cussed by Crandall, Wu, and Chong [5]. Our attack differs
in doing away altogether with calling functions in libc. The
previous attacks used short sequences as glue in combining
the invocations of functions in libc or in jump-starting the
execution of attacker-injected code. Our technique shows
that short code sequences, combined in appropriate ways,
can express any computation an attacker might want to
carry out, without the use of any functions.

Of the previous uses discussed here, Krahmer’s borrowed
code chunks exploitation technique [15] is the closest to ours.
Krahmer uses static analysis to look for register-pop se-
quences. He describes a shellcode-building tool that com-
bines these sequences to allow arbitrary arguments to be
passed to libc functions. However, exploits constructed us-
ing Krahmer’s techniques are still straight-line limited and
still rely on specific functions in libc— like other traditional
return-into-libc attacks, and unlike the new attack we pro-
pose.
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1.2.5 Wait, What about Zero Bytes?
The careful reader will observe that some of the gadgets

we describe in Section 3 require that a nul byte be placed
on the stack. This means that they cannot be used in the
payload of a simple stack-smash buffer overflow. This is not
a problem, however, for the following reasons:

1. We have not optimized our gadgets to avoid nul bytes.
If they are a concern, it should be possible to eliminate
the use of many of them, using the same techniques
used in standard shellcode construction. For example,
loading an immediate 0 into %eax could be replaced
by a code sequence of the form xor %eax, %eax; ret, or
by a load of 0xffffffff followed by an increment. If
the address of a code sequence includes a nul byte, we
could have Galileo choose another instance of that
sequence whose address does not include a nul byte,
or we can substitute a different sequence.

2. There are other ways by which an attacker can over-
write the stack than standard buffer overflows, and
not all suffer from the same constraints. For example,
there is no problem writing nul bytes onto the stack
in a format-string exploit.

3. We view our techniques not in isolation but as adding
to the toolbox available for return-into-libc attacks.
This toolbox already contains techniques for patch-
ing up nul bytes —as described, for example, by Ner-
gal [21, Section 3.4]— that are just as applicable to
exploits structured in the ways we describe.

A similar argument applies to the interaction between our
techniques and address space layout randomization (ASLR).
Those gadgets that do not require knowledge of addresses
on the stack can be used directly in the Shacham et al. [27]
derandomization framework. Some of those gadgets that do
require knowledge of addresses on the stack could likely be
rewritten not to require it.

1.2.6 Our Libc Testbed
We carry out our experiments on the gnu C Library dis-

tributed with Fedora Core Release 4: libc-2.3.5.so. Our
testing environment was a 2.4GHz Pentium 4 running Fe-
dora Core Release 4, with Linux kernel version 2.6.14 and
gnu libc 2.3.5, as noted.

2. DISCOVERING USEFUL INSTRUCTION
SEQUENCES IN LIBC

In this section, we describe our algorithm for discovering
useful code sequences in libc. We sifted through the se-
quences output by this algorithm when run on our testbed
libc to select those sequences employed in the gadgets de-
scribed in Section 3.

Before we describe the algorithm, we must first make more
precise our definition of “useful code sequence.” We say that
a sequence of instructions is useful if it could be used in one
of our gadgets, that is, if it is a sequence of valid instruc-
tions ending in a ret instruction and such that that none of
the instructions causes the processor to transfer execution
away, not reaching the ret. (It is the ret that causes the pro-
cessor to continue to the next step in our attack.) We say
that a useful sequence is intended if the instructions were ac-
tually inserted by the compiler in giving the machine-code

compiled equivalent for some function in libc. In accordance
with our thesis, the algorithm we describe attempts to avoid
intended code sequences, though it does not shy away from
using intended rets at the end of sequences.

Two observations guide us in the choice of a data struc-
ture in which to record our findings. First, any suffix of an
instruction sequence is also a useful instruction sequence.
If, for example, we discover the sequence “a; b; c; ret” in
libc, then the sequence “b; c; ret” must of course also exist.
Second, it does not matter to us how often some sequence
occurs, only that it does.5 Based on these observations, we
choose to record sequences in a trie. At the root of the trie is
a node representing the ret instruction; the “child-of” rela-
tion in the trie means that the child instruction immediately
precedes the parent instruction at least once in libc. For ex-
ample, if, in the trie, a node representing pop %eax is a child
of the root node (representing ret) we can deduce that we
have discovered, somewhere in libc, the sequence pop %eax;
ret.

Our algorithm for populating the trie makes use of fol-
lowing fact: It is far simpler to scan backwards from an
already found sequence than to disassemble forwards from
every possible location in the hope of finding a sequence of
instructions ending in a ret. When scanning backwards, the
sequence-so-far forms the suffix for all the sequences we dis-
cover. The sequences will then all start at instances of the
ret instruction, which we can scan libc sequentially to find.

In looking backwards from some location, we must ask:
Does the single byte immediately preceding our sequence
represent a valid one-byte instruction? Do the two bytes
immediately preceding our sequence represent a valid two-
byte instruction? And so on, up to the maximum length of
a valid x86 instruction.6 Any such question answered “yes”
gives a new useful sequence of which our sequence-so-far is a
suffix, and which we should explore recursively by means of
the same approach. Because of the density of the x86 ISA,
more than one of these questions can simultaneously have a
“yes” answer.7

Figure 1 presents, in pseudocode, our algorithm for finding
useful sequences.

2.1 “Boring” Instructions
The definition of “boring” we use is the following:

1. the instruction is a leave instruction and is followed by
a ret instruction; or

2. the instruction is a pop %ebp instruction and is imme-
diately followed by a ret instruction; or

3. the instruction is a return or an unconditional jump.

The last of these criteria eliminates instruction streams in
which control transfers elsewhere before the ret is reached,
as these are useless for our purposes. The other two are
intended to capture, and allow us to ignore, instruction

5From all the occurrences of a sequence, we might prefer to
use one whose address does not include a nul byte over one
that does.
6Including all instruction-modifying prefixes, 20 bytes.
7In fact, amongst the useful sequences we discover in libc
there is a point where four valid instructions all end at the
same point; and, examining libc as a whole, there is a point
where seven valid instructions do.
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Algorithm Galileo:
create a node, root, representing the ret instruction;
place root in the trie;
for pos from 1 to textseg len do:

if the byte at pos is c3, i.e., a ret instruction, then:
call BuildFrom(pos, root).

Procedure BuildFrom(index pos, instruction parent insn):
for step from 1 to max insn len do:

if bytes
ˆ
(pos − step) . . . (pos − 1)

˜
decode as a valid instruction insn then:

ensure insn is in the trie as a child of parent insn;
if insn isn’t boring then:

call BuildFrom(pos − step, insn).

Figure 1: The Galileo Algorithm.

streams that are actually generated by the compiler. Be-
cause the libc we examined was compiled with frame pointer
enabled, functions in libc will, by and large, end either with
a “leave; ret” sequence or an equivalent where the leave in-
struction is replaced by mov and pop instructions.

It is important to observe that the conditions given here
eliminate instruction sequences that would be useful in craft-
ing exploits. There are three ways in which they do so. First,
even if we wish to avoid calling actual functions in libc, suf-
fixes of those functions might prove useful and, if short, dif-
ficult for the compiler-writer to eliminate. Second, the same
characteristics that allow us to discover unintended instruc-
tion sequences elsewhere will also allow us to discover, within
the body of libc functions, unintended sequences that end
in intended “leave; ret” sequences. Third, both leave and
pop %ebp are one-byte instructions, and it is possible that a
“leave; ret” sequence we come upon wasn’t intended at all,
but is found in the libc byte stream in the same way that un-
intended rets are, explained in Section 5. Note that while the
techniques we develop for generating programs from chains
of instruction sequences do not usually interact with leaves,
it is possible to modify our techniques to work in this setting
using the frame-chaining methods described by Nergal [21].
That we are able to mount our attacks even without using
the code snippets eliminated by the conditions above gives
further evidence, of course, for our thesis.

2.2 Implementation and Performance
Our implementation of Galileo follows the pseudocode

given above quite closely. To discover what portion of libc
is mapped as an executable segment, our code parses libc’s
elf headers. We make use of two helper libraries. To parse
the elf headers, we use gnu libelf, version 0.8.9 [23]; to
decode x86 instructions, we use the Bastard project’s libdis-
asm [18], version 0.21-pre from CVS, with some local modi-
fications. Analyzing the 1,189,501 bytes of libc’s executable
segment yields a trie with 15,121 nodes, and takes 1.6 sec on
a 1.33GHz PowerPC G4 with 1 GB RAM. While it should
be possible to improve the running time of the algorithm—
for example, by using memoization to avoid decoding a par-
ticular byte sequence in libc several times —we judged our
implementation’s performance to be already quite adequate.

3. RETURN-ORIENTED PROGRAMMING
This section is intended to serve as a catalogue for the

actions that we can perform using the sequences we find

in libc, and as a tutorial to return-oriented programming
generally. Accordingly, we provide more explanatory detail
for the earlier gadgets than the later.

Gadgets are our intermediate organizational unit. Each
gadget specifies certain values to be placed on the stack that
make use of one or more sequences of instructions from libc.
Gadgets perform well-defined operations, such as a load, an
xor, or a jump. Return-oriented programming consists in
putting gadgets together that will perform the desired op-
erations. The set of gadgets we describe is Turing complete
by inspection, so return-oriented programs can do anything
possible with x86 code. We stress that the code sequences
pointed to by our gadgets are actually contained in libc; they
are not injected with the gadgets themselves — this is ruled
out by W⊕X. This is the reason that some of the sequences
used are weird looking: those were the best sequences avail-
able in our testbed libc.

Each of our gadgets expects to be entered in the same
way: the processor executes a ret with the stack pointer,
%esp, pointing to the bottom word of the gadget. This
means that, in an exploit, the first gadget should be placed
so that its bottom word overwrites some function’s saved
return address on the stack. Further gadgets can be placed
immediately after the first or, by means of the control flow
gadgets given in Section 3.3, in arbitrary locations. (It is
helpful for visualizing gadget placement to think of the gad-
gets as being instructions in a rather strange computer.)

3.1 Load/Store
We consider three cases: loading a constant into a regis-

ter; loading the contents of a memory location into a reg-
ister; and writing the contents of a register into a memory
location.

3.1.1 Loading a Constant
The first of these can trivially be accomplished using a

sequence of the form pop %reg; ret. One such example is il-
lustrated in Figure 2. In this figure as in all the following, the
entries in the ladder represent words on the stack; those with
larger addresses are placed higher on the page. Some words
on the stack will contain the address of a sequence in libc.
Our notation for this shows a pointer from the word to the
sequence. Other words will contain pointers to other words,
or immediate values. In the example here, once the pro-
cessor is executing the sequence pop %edx; ret, the ret that
caused it to enter the gadget will also have caused %esp to be
incremented by a word; the pop %edx instruction, therefore,
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%esp
pop %edx

ret

0xdeadbeef

Figure 2: Load the constant 0xdeadbeef into %edx.

will pop the next word on the stack — 0xdeadbeef, in this
case — into %edx, advancing %esp once more, past the end
of the gadget, so that the ret instruction causes execution
to continue with the next gadget, placed above it.

3.1.2 Loading from Memory
We choose to load from memory into the register %eax,

using the sequence movl 64(%eax), %eax; ret. We first load
the address into %eax, using, for example, the constant-load
procedure detailed above. Because of the immediate offset
in the movl instruction we use, the address in %eax must ac-
tually be 64 bytes less than the address we wish to load. We
then apply the movl sequence, after which %eax contains the
contents of the memory location. This procedure, and later
ones, are detailed in the full version of this paper, available
online [26].

3.1.3 Storing to Memory
We use the sequence movl %eax, 24(%edx); ret to store the

contents of %eax into memory. We load the address to be
written into %edx using the constant-load procedure above.

3.2 Arithmetic and Logic
There are many approaches by which we could implement

arithmetic and logic operations. The one we choose, which
we call our ALU paradigm, is as follows. For all opera-
tions, one operand is %eax; the other is a memory loca-
tion. Depending on what is more convenient, either %eax or
the memory location receives the computed value. This ap-
proach allows us to compute memory-to-memory operations
in a simple way: we load one of the operands into %eax,
using the load-from-memory methods of Section 3.1; we ap-
ply the operation; and, if the result is now held in %eax, we
write it to memory, using the store-to-memory methods of
the same section.

3.2.1 Add
The most convenient sequence for performing an add that

fits into our ALU paradigm is the following:

addl (%edx), %eax; push %edi; ret. (1)

The first instruction adds the word at %edx to %eax, which
is exactly what we want. The next instruction, however,
creates some problems. Whereas a “popret” sequence is
convenient for implementing a constant-load operation, a
“pushret” sequence is inconvenient for two reasons. First,
the value pushed onto the stack is then immediately used
by the ret instruction as the address for the next code se-
quence to execute, which means the values we can push are
restricted. Second, the push overwrites a word on the stack,
so that if we execute the gadget again (say, in a loop) it will
not behave the same.

%esp
pop %edi
ret

ret

pop %edx
ret

addl (%edx), %eax
push %edi
ret

0xdeadbeef

Figure 3: Simple add into %eax.

We first present a simple approach that does not take the
second problem into account. Before undertaking the addl
instruction sequence, we load into %edi the address of a ret
instruction. In return-oriented programming, a ret acts like
nop, increasing %esp but otherwise having no effect. We
illustrate this version in Figure 3. Observe that the push
%edi instruction causes the top word on the stack to be
overwritten by the contents of %edi, i.e., to point to a ret
instruction.

As can be seen, the gadget is changed by the pushret
sequence, and a subsequent run through it would not give
an add operation. This is fine if the gadget is only executed
once, but is a problem if it forms a subroutine or a loop
body. The solution in this case is to fix up the last word in
the gadget with the address of (1), as part of the gadget’s
code; it is detailed in the full version of this paper [26].

3.2.2 Other Arithmetic Operations
The sequence neg %eax; ret allows us to compute −x

given x and, together with the method for addition given
above, also allows us to subtract values. There is not, in the
sequences we found in libc, a convenient way to compute
multiplication, but the operation could be simulated using
addition and the logic operations described below.

3.2.3 Exclusive Or
We could implement exclusive or just as we implemented

addition if we had available a sequence like xorl (%edx), %eax
or xorl %eax, (%edx), but we do not. We do, however, have
access to a bytewise operation of the form xorb %al, (%ebx).
If we can move each byte of %eax into %al in turn, we can
compute a wordwise xor of %eax into a memory location x
by repeating the operation four times, with %ebx taking on
the values x, x + 1, x + 2, and x + 3. Conveniently, we can
rotate %eax using the sequence ror $0x08, %eax; ret. All
that remains, then is to deal with the side effects of the xorb
sequence we have:

xorb %al, 0x48908c0(%ebx); and $0xff, %al;
push %ebp; or $0xc9, %al; ret.

(2)

The immediate offset in the xorb instruction means that the
values we load into %ebx must be adjusted appropriately.
The and and or operations have the effect of destroying the
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%esp
pop %esp

ret

Figure 4: An infinite loop by means of an uncondi-
tional jump.

value in %al, but by then we have already used %al, so this
is no problem. (If we want to undertake another operation
with the value in %eax, we must reload it from memory.)
The push operation means that we must load into %ebp the
address of a ret instruction and that, if we want the xor to
be repeatable, we must rewrite the xorb instructions into the
gadget each time.

3.2.4 And, Or, Not
Bitwise-and and -or are also best implemented using byte-

wise operations, in a manner quite similar to the xor method
above. The code sequences are, respectively,

andb %al, 0x5d5e0cc4(%ebx); ret and

orb %al, 0x40e4602(%ebx); ret.

These code sequences have fewer side effects than (2) for
xor, above, so they are simpler to employ. Bitwise-not can
be implemented by xoring with the all-1 pattern.

3.2.5 Shifts and Rotates
Rotates by any immediate (constant) value can be imple-

mented using the sequence roll %cl, 0x17383f8(%ebx); ret.
Shifts by any immediate value can be implemented by a ro-
tate and a mask. Rotates and shifts by a variable value
could be implemented using a lookup table or a loop.

3.3 Control Flow

3.3.1 Unconditional Jump
Since in return-oriented programming the stack pointer

%esp takes the place of the instruction pointer in controlling
the flow of execution, an unconditional jump requires simply
changing the value of %esp to point to a new gadget. This
is quite easy to do using the instruction sequence pop %esp;
ret. Figure 4 shows a gadget that causes an infinite loop by
jumping back on itself.

Loops in return-into-libc exploits have been considered
before: see Gera’s “esoteric #2” challenge [9].

3.3.2 Conditional Jumps
These are rather more tricky. Below we develop a method

for obtaining conditional jumps.
To begin, some review. The cmp instruction compares its

operands and, based on their relationship, sets a number
of flags in a register called %eflags. In x86 programming,
it is often unnecessary to use cmp directly, because many
operations set flags as a side effect. The conditional jump
instructions, jcc, cause a jump when the flags satisfy certain
conditions. Because this jump is expressed as a change in
the instruction pointer, the conditional jump instructions

are not useful for return-oriented programming: What we
need is a conditional change in the stack pointer.

The strategy we develop is in three parts, which we tackle
in turn:

1. Undertake some operation that sets (or clears) flags of
interest.

2. Transfer the flags from %eflags to a general-purpose
register, and isolate the flag of interest.

3. Use the flag of interest to perturb %esp conditionally
by the desired jump amount.

For the first task, we choose to use the carry flag, CF,
for reasons that will become clear below. Employing just
this flag, we obtain the full complement of standard com-
parisons. Most easily, we can test whether a value is zero
by applying neg to it. The neg instruction (and its variants)
calculates two’s-complement and, as a side effect, clears CF
if its operand is zero and sets CF otherwise.

If we wish to test whether two values are equal, we can
subtract one from the other and test (using neg, as above)
whether the result is zero. If we wish to test whether one
value is larger than another, we can, again, subtract the first
from the second; the sub instruction (and its variants) set
CF when the subtrahend is larger than the minuend.

For the second task, the natural way to proceed is the lahf
instruction, which stores the five arithmetic flags (SF, ZF,
AF, PF, and CF) in %ah. Unfortunately, this instruction is
not available to us in the libc sequences we found. Another
way is the pushf instruction, which pushes a word containing
all of %eflags onto the stack. This instruction is available to
us, but like all pushrets is tricky to use in a return-oriented
setting.

Instead, we choose a third way. Several instructions use
the carry flag, CF, as an input: in particular, left and right
rotates with carry, rcl and rcr, and add with carry, adc. Add
with carry computes the sum of its two operands and the
carry flag, which is useful in multiword addition algorithms.
If we take the two operands to be zero, the result is 1 or 0
depending on whether the carry flag is set—exactly what we
need. This we can do quite easily by clearing %ecx and using
the instruction sequence adc %cl, %cl; ret. We note, finally,
that we can evaluate complicated Boolean expressions by
collecting CF values for multiple tests and combining them
with the logical operations described in Section 3.2.

For the third task, we proceed as follows. We have a word
in memory that contains 1 or 0. We transform it to contain
either esp delta or 0, where esp delta is the amount we’d
like to perturb %esp by if the condition evaluates as true.
One way to do this is as follows. The two’s complement of
1 is the all-1 pattern and the two’s complement of 0 is the
all-0 pattern, so applying negl to the word containing CF we
have all-1s or all-0s. Then taking bitwise and of the result
and esp delta gives a word containing esp delta or 0.

Now, we have the desired perturbation, and it is simple
to apply it to the stack pointer by means of the sequence

addl (%eax), %esp; addb %al, (%eax);

addb %cl, 0(%eax); addb %al, (%eax); ret

with %eax pointing to the displacement. The extra opera-
tions have the effect of destroying the displacement, but as
it has already been used this is no problem.
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3.4 System Calls
Our key observation is that many system calls have simple

wrappers in libc that behave, broadly, as follows:

1. move the arguments from the stack to registers, and
set the syscall number in %eax;

2. trap into the kernel (indirectly through the kernel-
supplied linux-gate.so.1); and

3. check for error and translate the return value appro-
priately, leaving it in %eax.

A typical example is the code for umask:

89 da mov %ebx, %edx
8b 5c 24 04 movl 4(%esp), %ebx
b8 3c 00 00 00 mov $0x0000003C, %eax
65 ff 15 10 00 00 00 lcall %gs:0x10(,0)
89 d3 mov %edx, %ebx
c3 ret

The GS-segment lcall invokes __kernel_vsyscall, which is-
sues the sysenter or int 0x80 instruction (cf. [8]). If we set
up the system call parameters ourselves and jump into a
wrapper at step 2—that is, immediately before the lcall in
the fourth line, for umask—we can invoke any system call
we choose, with any arguments.

For system calls, then, it is safe to use intended sequences
in libc, rather than the (largely) unintended sequences else-
where. Since nearly all useful programs make system calls,
the requirement that a system call wrapper function be
available is milder than the requirement that specific libc
routines, such as system, be available. On Linux, we can also
do away with this assumption by calling __kernel_vsyscall

directly, after finding it by parsing the elf auxiliary vectors
(cf. [7]).

3.5 Function Calls
Finally, we note that nothing prevents us from making

calls to arbitrary functions in libc. This is, in fact, the
basis for previous return-into-libc exploits, and the required
techniques are described in by Nergal [21]; the discussion of
“frame faking” is of particular interest. It suffices to add
that it is best to invoke functions with the stack pointer set
to a part of the stack not used by other return-oriented code,
because otherwise those functions might, in using the stack,
trash a gadget that we intend to reinvoke.

4. RETURN-ORIENTED SHELLCODE
We now present a return-oriented shellcode as an applica-

tion of the techniques laid out in Section 3. Our shellcode
invokes the execve system call to run a shell. This requires:
(1) setting the system call index, in %eax, to 0xb; (2) set-
ting the path of the program to run, in %ebx, to the string
“/bin/sh”; (3) setting the argument vector argv, in %ecx,
to an array of two pointers, the first of which points to the
string “/bin/sh” and the second of which is null; and (4)
setting the environment vector envp, in %edx, to an array
of one pointer, which is null. The shellcode is in Figure 5.

We store “/bin/sh” in the top two words of the shellcode;
we use the next two words for the argv array, and reuse
the higher of these also for the envp array. We can set up
the appropriate pointers as part of the shellcode itself, but

%esp
xor %eax, %eax
ret

pop %ecx
pop %edx
ret

0x0b0b0b0b

+ 24

movl %eax, 24(%edx)
ret

add %ch, %al
ret

pop %ebx
ret

pop %ecx
pop %edx
ret

lcall %gs:0x10(,0)
ret

(word to zero)

/bin

/sh\0

Figure 5: Shellcode.

to avoid nul bytes we must zero out the null-pointer word
after the shellcode has been injected.

The rest of the shellcode behaves as follows:

• Word 1 (from the bottom) sets %eax to zero.

• Words 2–4 load into %edx the address of the second
word in argv (minus 24; see Section 3.1.2) and, in
preparation for setting the system call index, load into
%ecx the all-0b word.

• Word 5 sets the second word in argv to zero.

• Word 6 sets %eax to 0x0b by modifying its least sig-
nificant byte, %al.

• Words 7–8 point %ebx at the string “/bin/sh”.

• Words 9–11 set %ecx to the address of the argv array
and %edx to the address of the envp array.

• Word 12 traps into the kernel— see Section 3.4.

Provided that the addresses of the libc instruction se-
quences pointed to and of the stack addresses pointed to
do no contain nul bytes, this shellcode contains no nul
bytes except for the terminator for the string “/bin/sh”.
Nul bytes in the stack addresses can be worked around by
having the shellcode build these addresses at runtime by
examining %esp and operating on it; this would also allow
the shellcode to be placed at various stack positions with-
out needing retargeting. Nul bytes in libc addresses can be
handled using the techniques recalled in Section 1.2.5.

Suppose that libc is loaded at base address 0x03000000
into some program. Suppose, moreover, that this program
has a function exploitable by buffer overflow, with return
address stored at 0x04ffffefc. In this case, the shellcode given
above yields:
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3e 78 03 03 07 7f 02 03 0b 0b 0b 0b 18 ff ff 4f

30 7f 02 03 4f 37 05 03 bd ad 06 03 34 ff ff 4f

07 7f 02 03 2c ff ff 4f 30 ff ff 4f 55 d7 08 03

34 ff ff 4f ad fb ca de 2f 62 69 6e 2f 73 68 00

Note that there is no nul byte except the very last. Like all
the other examples of return-oriented code presented in this
paper, this shellcode uses only code that is already present
in libc, and will function even in the presence of W⊕X.

5. A CATALOG OF RETS
In this section, we give some statistics about the origin of

c3 bytes in the libc executable segment. Our methodology
is a as follows. For each c3 byte that we find, we check
whether it is within a span of bytes belonging to a function
that is exported in libc’s SYMTAB section.8 If so, we include it
in our statistics. We then disassemble the function until we
discover which instruction includes the c3 byte. Not all of
libc’s executable segment is covered by exported functions.
Some of the segment is taken up by elf headers, and some
by static functions that are not named in the SYMTAB section.
Nevertheless, this methodology is sufficient to allow us to
draw meaningful conclusions.

Out of 975,626 covered bytes, 5,483 are c3 bytes, or one
in every 178. (This is more than the expected one-in-256
because ret instructions occur often.)

• 3,429 are actually ret instructions. Since there are only
3,157 unique entrypoints listed in the SYMTAB section,
this means that some functions have more than one
return instruction.

• 1,692 occur in the ModR/M byte for an add imm32,
%ebx instruction, opcode 81 c3 imm32. Immediate-
add is part of “Immediate Grp 1” (opcodes 80–83),
which use bits 3–5 of the ModR/M byte to encode an
opcode extension. In this case bits 6 and 7 (11) specify
that the target is a register; bits 0–2 (011) name %ebx;
and bits 3–5 (000) specify an add operation. For com-
parison, 81 c2 would encode add imm32, %edx, and 81

cb would encode or imm32, %ebx. See Tables 2-1 and
A-4 of [12].

• 290 occur in immediate displacements. Of these, 273
specify offsets to the instruction point—109 relative
calls, 100 relative conditional jumps, and 64 relative
unconditional jumps —and the other 17 specify data
offsets, as in movb %al, -61(%ebp), opcode 88 45 c3.

• 35 occur in a proper ModR/M byte, which indicates
%eax and %ebx as source and target, respectively. Of
these, 33 are in the instruction add %eax, %ebx, opcode
89 c3, and the other two are shrd %cl, %eax, %ebx and
shld %cl, %eax, %ebx, opcodes 0f ad c3 and 0f a5

c3.

• 28 occur in immediate constants, in add, mov, and
movw instructions.

• 8 occur in the SIB byte, indicating addressing of the
form (%ebx,%eax,8). These all happen to be in in-
stances of the instruction movl r/m32, r32 in which the

8There are substantially more functions listed in the SYMTAB
section than in the DYNSYM section, which lists only the func-
tions that are actually made available for dynamic linking.

ModR/M byte specifies SIB+disp32 addressing. (Op-
codes: 8b modr/m c3 imm32, with modr/m being of the
form 10bbb100.)

• 1 occurs in the floating point operation fld %st(3),
opcode d9 c3. (More generally, d9 c0+i encodes fld
%st(i).)

5.1 Can we avoid spurious rets?
Some modest changes to GCC might yield a libc without

unintended c3 bytes. For example, each procedure could
have only a single exit point (with the standard leave; ret
sequence), to which early exits could jump. The %ebx reg-
ister could be avoided as an accumulator for adds. Moves
from %eax to %ebx could be avoided or written using in-
structions other than mov. Instruction placement could be
jiggered— in most cases, at least — to avoid offsets with c3

bytes in them.
Such a strategy might indeed succeed in ridding gener-

ated executables of unintended c3 bytes. The cost would be
a compiler that is less transparent and more complicated,
and a certain loss of efficiency in the use of registers on an
already register-starved architecture: %ebx is handy as an
accumulator because, unlike %eax, %ecx, and %edx, it is
callee-saved in the Intel calling convention [32].

We must be clear, however, that while this would elim-
inate unintended rets, it would not eliminate unintended
sequences of instructions that end in a ret. This is because
whereas the attacker is now constrained to choosing attack
strings that are suffixes of valid libc functions, he still need
not begin his strings on an intended instruction boundary.

There is a more fundamental problem, however. The gad-
gets we described in Section 3 made use only of instruc-
tion sequences ending in c3 bytes because these were suf-
ficient. However, the x86 ISA actually includes four op-
codes that perform a return instruction: c3 (near return),
c2 imm16 (near return with stack unwind), cb (far return),
and ca imm16 (far return with stack unwind). The vari-
ants with stack unwind, having popped the return address
off the stack, increment the stack pointer by imm16 bytes;
this is useful in calling conventions where arguments are
callee-cleaned. The far variants pop %cs off the stack as
well as %eip. These three variants are more difficult to use
in exploits of the sort we describe. For the far variants, the
correct code segment must be placed on the stack; for the
stack-unwind variants, a stack underflow must be avoided.
Nevertheless, it should be possible to use them. And elim-
inating instances of all four would be difficult, as it would
require avoiding four byte values out of 256.

Moreover, if we have the ability to load immediate val-
ues into registers, for example using the techniques of Sec-
tion 3.1, then we can use some sequences that do not end
in a ret. For example, if %ebx points to a ret instruction
in libc, then any sequence ending in jmp %ebx can be used.
This is simply register springs (cf. [6, 5]) in a return-into-libc
context. With a bit more setup, we can also use sequences
ending in jmp imm(%esp), if the word at imm(%esp) contains
the address of a ret, and again with other registers replac-
ing %esp. This translates to the return-into-libc context a
technique due to Litchfield [17].

Finally, we note that the libc executable image includes
areas that are not intended as executable code: notably, the
elf headers. These might contain return instructions as
well, which modifying the compiler will not address.
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6. CONCLUSION AND FUTURE WORK
We presented a new way of organizing return-into-libc ex-

ploits on the x86 that is fundamentally different from pre-
vious techniques. By means of static analysis we discovered
short instruction sequences; we then showed how to com-
bine such sequences into gadgets that allow an attacker to
perform arbitrary computation. There are several directions
for future work.

A first direction is towards greater automation and in-
tegration with existing technologies. Given a collection of
gadgets, one could create add a return-oriented backend to
gcc or llvm. To build our gadgets we combed over the
output of Galileo manually. It should be possible, how-
ever, to analyze the available code sequences automatically
to discover how to combine them into gadgets.

A second research direction would attempt to validate (or
invalidate) our thesis by examining C libraries in other plat-
forms. While the gadgets we describe all derive from a par-
ticular distribution of gnu libc, the techniques we present
for discovering sequences and combining them into gadgets
should be universally applicable. A preliminary analysis we
conducted of msvcrt.dll, the Microsoft C runtime, seemed
promising.
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